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Abstract

Matched asymptotic expansions allow one to give, at two scales, a description of the solution to the antiplane

problem of two di�erent elastic substrates bonded together by a thin elastic adhesive layer with a crack lying inside
or even outside at a short distance of it. The leading term is the classical solution obtained, by ®nite elements for
instance, when perfect transmission conditions are assumed through the line modelling the interface. The corrections
depend on the relative sti�nesses of the components and on the thickness of the joint. It also depends on the crack

location, within the joint or outside. Two kinds of Mode III stress intensity factors are de®ned, a ®ctitious and an
actual one, they are so-called far and near (or remote and local) by the authors. The ®ctitious one is meaningless
and must be rescaled by an appropriate coe�cient to give the actual one. # 2000 Elsevier Science Ltd. All rights

reserved.

1. Introduction

Structures are often made of complex assemblies, among other methods, gluing and welding are used
in some cases to realize the bondings. They imply the existence of a thin additional layer made of an
extraneous material. In general, it is di�cult to take into account these small zones, in a structural
computation by ®nite elements for instance, they are treated as idealized surfaces with perfect
transmission of displacements and forces between the components. As will be seen below, this
approximation is in general, quite realistic, it corresponds to the leading term of an asymptotic
expansion of the solution in terms of the dimensionless parameter associated with the joint thickness.
Nevertheless, such a description becomes insu�cient if fracture or any micro-mechanism of the bonding
zone is involved. A more precise knowledge of the stress ®eld within and near the joint is required.
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A ®rst approach initiated by the problems of gluing is based on an analysis of the stress ®eld within
the joint (Goland and Reissner, 1944; Wooley and Carver, 1971; Gilibert and Rigolot, 1979; Delale et
al., 1981; Tsai and Morton, 1994). The assumption of slender substrates is often made and is then
dedicated to plate assembly.

Another approach consists in replacing the joint by springs and deriving a rheological model (Cornell,
1953; Jones and Whittier, 1967; LeÂ neÂ and Leguillon, 1982; Rose, 1987; Geymonat and Krasucki, 1996).
This model embeds a major assumption, the joint sti�ness is much smaller than the substrate ones.

Other points of view are also proposed. Hutchinson et al. (1987) considered the plane elasticity
problem of two substrates bonded together along a line with a crack paralleling the interface. The
analysis on an in®nite domain with remote loads exhibits a linear relation between far and near stress
intensity factors (as baptised by Ryvkin, see hereafter). A similar linear relation is obtained by Suo and
Hutchinson (1989) for a crack lying along the surface of a thin layer in a sandwich structure. Ryvkin et
al. (1995) studies the interaction of a thin layer and a crack parallel to it, far and near Mode III stress
intensity factors are de®ned, they are interpreted in terms of an energy release rate, it leads to the
conclusion that the far one may become meaningless. Ryvkin (1996) assumes a periodic stacking
sequence in a laminated composite and examines the dependence of the Mode III stress intensity factor
on the layers thickness. Atkinson and Chen (1996) consider a structure made of two identical elastic or
viscoelastic substrates bonded together by an elastic or viscoelastic adhesive. They show the in¯uence of
the thickness and the sti�ness of the adhesive on the Mode III stress intensity factor.

The present study, using matched asymptotics (Nguetseng and Sanchez-Palencia, 1985), allows one to
give a two scales analysis of the problem of two di�erent elastic substrates bonded together by a thin
elastic layer (smallness of this layer is the only assumption) when a crack lies within the joint (cohesive
fracture) or along the interfaces between the joint and the substrates (adhesive fracture) or even outside
the joint at a short distance. The leading term is the classical one obtained for instance by a ®nite
element calculation with perfect transmission conditions through the line modelling the adhesive and
stress free conditions on the crack lips. The next terms of the expansions arise to be corrections to this
coarse approximation. The role of the components sti�ness and the thickness of the adhesive are
explicitly expressed. Two kinds of stress intensity factors can be derived from this analysis but rather
than calling them far and near stress factors (Ryvkin et al., 1995), we prefer talking about ®ctitious and
actual. For the sake of simplicity, the analysis is restricted to an out of plane bidimensional elastic
problem without body forces, but the same reasoning extends to the generalized plane elasticity without
real insuperable di�culties (a brief generalization is proposed in Leguillon, 1995). The complete
structure O e is divided into two parts O 1e and O 3e made of two di�erent isotropic materials (shear
modulus G1 and G3 also noted sometimes as G+ and Gÿ) bonded together along the straight boundaries

Fig. 1. The two substrates O 1e and O 3e bonded together by an adhesive layer O 2e.

D. Leguillon, R. Abdelmoula / International Journal of Solids and Structures 37 (2000) 2651±26722652



G 1e and G 3e parallel to the x1-axis by a thin layer O 2e with thickness e (Fig. 1). The sti�ness G2 of the
adhesive can be larger (oxide in metal matrix materials) or smaller (polymer in composite bondings).

The dimensionless small parameter e is the ratio e/L where L denotes a characteristic length of the
structure, the total joint length for instance.

Remark 1. In the following L = 1 for simplicity, it can be understood as a way to de®ne dimensionless
lengths, in other words, each physical length and displacement is divided by L.

Throughout this paper the words `joint', `adhesive layer', and `bonding zone' will denote the physical
layer with a small but non zero thickness, it can also be understood as an `interphase', whereas the word
`interface' will be used for idealized contact surfaces or lines in 2-D (without thickness) between di�erent
materials. Moreover, for a better understanding, it is recalled that the adjectives outer and inner (terms,
expansions, . . . ) are used to characterize, respectively, the far and near ®elds.

2. The interface boundary layer

2.1. Outer expansion

As e 4 0, the domain Oe reduces to a domain O made of two parts O 1 and O 3 sharing the common
boundary G 13 (Fig. 2).

The adhesive material has disappeared in this ®nal frame which looks typically like the one used by
an engineer starting to mesh the structure before a ®nite elements computation. Nevertheless, the
transmission conditions to write down along this ®ctitious common interface are not obvious. Let us
assume an outer expansion of the out of plane displacement solution U e in the form

U e�x1, x2� � U 0�x1, x2� � f1�e�U 1�x1, x2� � � � � , �1�
where f1(e )4 0 as e4 0 and where U 0 is the solution to the unperturbed problem settled on O with the
equilibrium equation and classical perfect transmission conditions through G 13

@2U 0

@x2
1

� @
2U 0

@x2
2

� 0 in O1 and O3, �2�

Fig. 2. The limit unperturbed domain O=O 1 [O 3.
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(U 0) � 0, (s0)n � 0 through G13, �3�
where (�) denotes the jump of any quantity through G 13 and n is the normal to G 13 (its direction is
chosen arbitrarily and determines the sign of the jumps). The stress ®eld s 0 is de®ned in the two
substrates O k (k= 1, 3) by

s0i3 � Gk
@U 0

@xi
: �4�

Remark 2. No boundary conditions are mentioned herein since they play no speci®c role. There is just
one simplifying assumption to consider, prescribed forces or displacements are acting only at a distance
of the ends of the bonding zone.

Remark 3. Transmission conditions are a priori prescribed in (3). It will be seen below that otherwise
they will occur as a consequence of the matching process.

U 0 and U 1 are de®ned on the limit domain O and thus provide the explanation for the name `outer',
the expansion (1) is only valid out of a vicinity of the interface G 13.
Obviously U 1 cannot be straightforwardly determined. The matching conditions will govern the

behaviour of the ®rst additional correction to the unperturbed term. To this aim, let us consider an
interior point P of the interface G 13 (i.e. any point except the ends). U 0 is smooth in the vicinity points,
moreover, at this time, we assume that the other terms of (1) are also piecewise smooth, i.e. smooth
above and under the interface (it will be a posteriori checked). Thus, they can be expanded in Taylor
series with respect to the space variable x2 orthogonal to G 13

U j
2�x1, x2� � U j

2�x1, 0� � x2

@U j
2

@x2
�x1, 0� � x2

2

2

@2U j
2

@x2
2

�x1, 0� � � � � , �5�

where the index2stands, respectively, for the upper (x2 > 0) and lower (x2 < 0) domains. In particular,

Fig. 3. The inner domain derived from stretching y2=x2/e.
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due to the de®nition of U 0

U 0
��x1, 0� � U 0

ÿ�x1, 0�: �6�
Expansion (5) determines the inner behaviour of the outer terms.

2.2. Inner expansion, terms 0 and 1

Next, in order to de®ne the inner expansion, let us consider in the vicinity of P the stretched variable
y2=x2/e. As e 4 0, the domain spanned by y2 is an in®nite line, the upper part lies in O 1, the lower one
in O 3 and the intermediate one with a unit length in O 2, it is the stretched adhesive layer bounded up
and down by the points G 1 and G 3 (Fig. 3).

The inner expansion reads

U e�x1, ey2� � F0�e�V 0�x1, y2� � F1�e�V 1�x1, y2� � F2�e�V 2�x1, y2� � � � � : �7�
Each term of this expansion must ful®l the equilibrium equation and classical continuity conditions
through G 1 and G 3 located, respectively, at y2=1/2 and y2=ÿ1/2. Moreover, the matching conditions
govern the behaviour at in®nity. At the leading order the system writes

@2V 0

@y22
� 0, �8�

(V 0) � 0, (S0)n � 0 for y2 �21=2, �9�

V 0�x1, y2�0U 0�x1, 0� as y2421, �10�
where the stress ®eld S 0 is de®ned by

S0
13 � 0, S0

23 � Gk
@V 0

@y2
in Ok, k � 1, 2, 3:

Finally, the ®rst term of (7) is given by

F0�e� � 1, V 0�x1, y2� � U 0�x1, 0�: �11�

Remark 4. If the continuity of the outer term (3) was not assumed it will appear at this step as a
consequence of the continuity of V 0. See Remark 3 concerning a priori and a posteriori de®ned
transmission conditions.

At the next order, V 1 arises to be piecewise linear, the equilibrium equation is identical to (8) and the
continuity condition is similar to (9)

(S1)n � 0 for y2 �21=2,

with
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S1
13 � Gk

@V 0

@x1
, S1

23 � Gk
@V 1

@y2
in Ok, k � 1, 2, 3:

The matching conditions now read

V 1
2�x1, y2�0y2

@U 0
2�x1, 0�
@x2

�U 1
2�x1, 0� as y2421,

and lead to

F1�e� � e:

The corresponding term of the inner asymptotic expansion writes

V 1�x1, y2� � y2
@U 0

2

@x2
�x1, 0� �U 1

2�x1, 0� resp: in O1 ��� and O3 �ÿ�, �12�

V 1�x1, y2� � y2
@U 0
�

@x2
�x1, 0� �U 1

��x1, 0� � G1 ÿ G2

2G2

@U 0
�

@x2
�x1, 0��2y2 ÿ 1�, �13�

V 1�x1, y2� � y2
@U 0
ÿ

@x2
�x1, 0� �U 1

ÿ�x1, 0� � G3 ÿ G2

2G2

@U 0
ÿ

@x2
�x1, 0��2y2 � 1�, �14�

in O 2 resp. for y2 > 0 and y2 < 0.

Remark 5. The normal stress continuity is ensured through the line y2=0 as a consequence of the
normal stress continuity of the outer term U 0 (3). In other words, if such a continuity (3) was not
assumed it will arise here as a consequence. See again Remarks 3 and 4 concerning a priori and a
posteriori de®ned transmission conditions.

On the other hand, the displacements continuity must be added as a condition

(U 1) � G1 ÿ G2

2G2

@U 0
�

@x2
�x1, 0� � G3 ÿ G2

2G2

@U 0
ÿ

@x2
�x1, 0�: �15�

As previously de®ned, the brackets denote a jump, (U 1)=U 1
+(x1, 0)ÿU 1

ÿ(x1, 0), thus, the above
condition (15) is the ®rst transmission condition through G 13 for the second term U 1 of the outer
expansion (1).

2.3. Inner expansion, term 2

One additional condition through G 13 is missing in order to have a well-posed problem de®ning U 1.
It will be obtained from investigating the next term V 2 of the inner expansion (7). The equilibrium
equation reads

@2V 2

@y22
� @

2V 0

@x2
1

� 0 in Ok, k � 1, 2, 3,

and becomes, with the help of the macroscopic equilibrium equation (2) and the knowledge of the ®rst
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inner term (11)

@2V 2

@y22
�x1, y2� � @2U 0

@x2
2

�x1, 0�: �16�

Moreover, again as a consequence of the equilibrium equation (2) and the continuity of U 0 (3) and (6),
upper and lower values of the right-hand-side member of (16) are equal, the index2 is not required. The
transmission conditions (9) remain unchanged (up to the index) and the matching conditions impose the
behaviour at in®nity

V 2�x1, y2�0y22
2

@2U 0

@x2
2

�x1, 0� � y2
@U 1

2

@x2
�x1, 0� �U 2

2�x1, 0� as y2421:

The matching conditions imply

F2�e� � e2,

and V 2 is a quadratic function de®ned by

V 2�x1, y2� � y22
2

@2U 0

@x2
2

�x1, 0� � y2
@U 1

2

@x2
�x1, 0� �U 2

2�x1, 0�, �17�

in O 1 (+) resp. O 3 (ÿ).

V 2�x1, y2� � �id � �
 
G1 ÿ G2

4G2

@2U 0

@x2
2

� G1 ÿ G2

2G2

@U 1
�

@x2

!
�x1, 0��2y2 ÿ 1�, �18�

V 2�x1, y2� � �id � �
 
G2 ÿ G3

4G2

@2U 0

@x2
2

� G3 ÿ G2

2G2

@U 1
ÿ

@x2

!
�x1, 0��2y2 � 1�, �19�

in O 2 resp. for y2 > 0 and y2 < 0.
In the above two relations, the bracket [id ] must be replaced by an expression identical to (17) [this

feature was already met in (12)±(14)].
There are now two continuity conditions through the line y2=0. The ®rst one provides a relation on

Fig. 4. A singular corner at the end of the adhesive layer.
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the discontinuity of U 2 through G 13 which becomes relevant when studying this term (the third outer
one), and the second one provides as expected the complementary condition to (15) relative to U 1

(s1)n �
�
G2 ÿ G1 � G3

2

�
@2U 0

@x2
2

�x1, 0�: �20�

The stress ®eld s 1 is de®ned by a relation analogous to (4) (up to the index once more) and

(s1)n � G1

@U 1
�

@x2
�x1, 0� ÿ G3

@U 1
ÿ

@x2
�x1, 0�:

The two conditions (15) and (20) are consistent but requires U 0 to be smooth enough since, roughly
speaking, U 1 depends on the ®rst derivative of U 0 and the ®rst derivative of U 1 depends on the second
derivative of U 0. Such a smoothness holds true at any interior point of the straight interface but
generally fails at the ends of this line, at a sharp corner or at a crack tip (Figs. 4 and 5).

The forthcoming sections of this paper deal with the analysis of this second situation (Fig. 5) which is
the most entangled (Leguillon, 1994, 1995, 1996).

2.4. The low sti�ness joint

If one assumes the sti�ness of the bonding material to be far smaller than that of the substrates, the
following relation

G2 � eG, �21�
where G takes a ®nite value close to G1 and G3, is commonly admitted.

Then the above asymptotics are obviously modi®ed. Eqs. (8) and (10) remain unchanged as well as
the ®rst part of (9). But the stress continuity condition at y2=21/2 combined with the asymptotics and
(21) entail a relation between two successive expansion orders j ÿ 1 and j (in this subsection, a single Ä is
used to denote the terms of the former model and a double ~~: those of the springs model)

G1

@ ~~V
0

�
@y2
� G3

@ ~~V
0

ÿ
@y2
� 0, G1

@ ~~V
j

�
@y2
� G

@ ~~V
jÿ1
�
@y2

, G3
@ ~~V

j

ÿ
@y2
� G

@ ~~V
jÿ1
�
@y2

for jr1:

~~V j
2 and

~~V j
� denote

~~V j in O1 (+), resp. O3 (ÿ) and O2 (�). Remark 4 becomes obsolete, the continuity

Fig. 5. A singular crack tip for a crack lying within the adhesive layer.
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condition on
~~U 0 is no longer a necessary condition. One has to consider the upper and lower values

~~U 0
2

and the ®rst term of the inner expansion reads

~~V
0

2�x1, y2� � ~~U
0

2�x1, 0�, ~~V
0

��x1, y2� � ( ~~U
0

)y2 � h ~~U
0

i

instead of (11), where

( ~~U
0

) � ~~U
0

��x1, 0� ÿ ~~U
0

ÿ�x1, 0�, h ~~U
0

i �
~~U
0

��x1, 0� � ~~U
0

ÿ�x1, 0�
2

:

The stress continuity condition at the next order
~~V 1 leads to

G1

@ ~~U
0

�
@x2
�x1, 0� � G3

@ ~~U
0

ÿ
@x2
�x1, 0� � ~~s

0
n � G( ~~U

0

):

This is the well-known springs model involving a relation between the jump of the leading term
~~U 0

through G 13 and the (continuous) normal stress ~~s
0
n: Coe�cient G=G2/e [i.e. relation (21) in the present

dimensionless model, see Remark 1] is the spring sti�ness.
It di�ers from the model settled before, and it is obviously di�cult to introduce the asymptotic

relation (21) in the former model to recover the latter one. Two small parameters are competing, the
relative joint thickness e/L and the relative joint sti�ness G2/G1 or G2/G3. However, it can be very
formally done. UÄ 0 remains continuous as stated in the assumptions, and the following jump relation

~s0n � G( ~U
0 � e ~U

1)

is derived from (15). Investigating the next terms of the asymptotics leads to extend this relation to

� ~s0 � e ~s1�n � G( ~U
0 � e ~U

1 � e2 ~U
2), . . .

which incites one to consider the latter model as a limit of the former one.
To illustrate that point let us study the following simple out of plane shear problem. The two

substrates are identical G1=G3=G and G2=eG [i.e. (21) holds true]. The domain O e (Fig. 1) is
submitted to an out of plane traction T on the upper face and ÿT on the lower one, thus x2=0 is a
symmetry axis and we consider only the solution in the upper part x2 > 0 of the domains under
consideration. The exact solution (in the perturbed domain) is

U e � T

eG
x2 for 0 < x2 < e=2, U e � T

G

�
x2 � 1ÿ e

2

�
for e=2 < x2,

and the approximations corresponding to the two models (in the unperturbed domain) read

~U
0 � T

G
x2, ~U

1 � 1ÿ e
2e

T

G
,

~~U
0

� T

G
�x2 � 1=2�:

In this elementary example, the springs model leading term
~~U 0 appears clearly as the limit of the two

®rst terms UÄ 0+eUÄ 1 of the former model as e 4 0. Moreover, the former model is confounded with the
exact solution whatever e.

A numerical comparison between the di�erent models is proposed in Section 6 on a structure
embedding a crack.
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Remark 6. Counter to the springs model, the present model works for any value of the joint sti�ness, in
the above elementary example the jump is positive if the joint is more compliant than the substrates
triggering a gap, and it is negative if the joint is sti�er leading to an overlap.

One di�erence between the two models, which plays an important role in the next section, lies in the
stress concentration due to a crack tip for instance. In the former case the crack tip singularity exists in
the leading term of the outer expansion, whereas in the springs model, the singularity is weak
(logarithmic) and concerns only the stress component s 0

11 parallel to the crack. In the last case, the

brittle fracture criteria do not apply to the outer term
~~U 0 while they remain valid in the other one.

3. The crack lipsÐouter and inner expansions

It is now assumed that a crack extends within the joint. It can be located whether inside the bonding
material (cohesive fracture) or along the upper or lower contact zones between the adhesive layer and
the substrates (adhesive fracture), or even at a short distance within one of the substrate (Fig. 6).

As will be seen in the next section, the exact location of this crack does not play a major role at the
beginning of the analysis. It will be assumed here that the crack lies at a distance ed from the midpoint
of the joint (i.e. the distance smallness is comparable to the joint thickness).

Fig. 6. A crack paralleling the adhesive layer at a distance ed.

Fig. 7. The crack in the limit domain O=O 1 [O 3.
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As before, as e 4 0 the domain O e reduces to O which now embeds a crack along the interface G 13.
This interface has two distinct complementary parts, the crack G 13

c and G 13
u corresponding to the

uncracked part (which was the aim of the two preceding sections). It is to be pointed out that ed
vanishes as e 4 0 and then the exact location of the crack does not play any role in this framework
(Fig. 7).

To complete the description of the solution, the same previous reasoning must be done at any interior
point P ' of the crack lips, whether on the upper or on the lower lip (denoted, respectively, by the index
+ and ÿ), the two situations are symmetric. These lips are assumed to be stress free and conditions (3)
must be replaced by

s02n � 0 on G13
c2,

which rewrites simply

G2
@U 0

2

@x2
�x1, 0� � 0 on G13

c2:

Note that since no continuity condition is required through the crack, U 0
+(x1, 0) and U 0

ÿ(x1, 0) are
distinct. The analysis of the inner expansion (7) is now easier, the ®rst term is

V 0�x1, y2� � U 0
2�x1, 0� resp: for dRy2 ��� and y2Rd �ÿ�:

It holds true whatever the relative location of the crack, as well as the second term which reads

V 1�x1, y2� � U 1
2�x1, 0� resp: for dRy2 ��� and y2Rd �ÿ�:

The third term V 2 is somewhat similar to the previous one but depends now on the location of the
crack.

. If ÿ1/2 R d R 1/2, i.e. the crack is inside or along one side of the joint, then (17) holds true in O 1

and O 3. Eq. (18) holds in the upper strip d R y2 R 1/2 and (19) in the lower one ÿ1/2 R y2 R d. The
continuity conditions (20) must be replaced by a stress free condition along the lips de®ned by y2=d,
it leads to

G1

@U 1
�

@x2
�x1, 0� �

�
G2 ÿ G1

2
ÿ dG2

�
@2U 0

�
@2x2

2

�x1, 0�, �22�

G3
@U 1
ÿ

@x2
�x1, 0� �

�
G3 ÿ G2

2
ÿ dG2

�
@2U 0

ÿ
@2x2

2

�x1, 0�, �23�

which are non-homogeneous boundary conditions for the problem U 1.
. If dr1/2 the crack is outside the joint in the upper domain then, (17) with the index + holds true

above the crack and the stress free boundary condition at y2=d leads to

G1

@U 1
�

@x2
�x1, 0� � ÿdG1

@ 2U 0
�

@2x2
2

�x1, 0�: �24�

Eq. (17) with the index ÿ also holds true below the crack in O 3. Eq. (19) holds true in the whole joint
from y2=ÿ1/2 to y2=1/2 (the index ÿ must be added to the second-order derivative @2U 0/@x 2

2). In
the layer located between the joint and the crack 1/2 R y2 R d, the solution takes the general form
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V 2�x1, y2� � y22
2

@2U 0
ÿ

@x2
2

�x1, 0� � by2 � c:

The stress free condition on the lower lip of the crack leads to

b � ÿd@
2U 0
ÿ

@x2
2

�x1, 0�:

The continuity condition through the interface G 1 allows one to determine the constant c but is
irrelevant for this part of the analysis and ®nally it is the normal stress continuity condition through
G 1 which provides the lower boundary condition for U 1 along the crack

G3
@U 1
ÿ

@x2
�x1, 0� �

�
G1 � G3 ÿ 2G2

2
ÿ dG1

�
@2U 0

ÿ
@x2

2

�x1, 0�: �25�

. Very symmetrically, if the crack is in the lower substrate, d R ÿ1/2, the same reasoning yields

G1

@U 1
�

@x2
�x1, 0� �

�
2G2 ÿ G1 ÿ G3

2
ÿ dG3

�
@2U 0

�
@x2

2

�x1 , 0�, �26�

G3
@U 1
ÿ

@x2
�x1, 0� � ÿdG3

@ 2U 0
ÿ

@2x2
2

�x1, 0�: �27�

Summing up these results gives the general form of the boundary conditions along the crack lips

G1

@U 1
�

@x2
�x1, 0� � H��d �

@2U 0
�

@x2
2

�x1, 0�, G3
@U 1
ÿ

@x2
�x1, 0� � Hÿ�d�@

2U 0
ÿ

@x2
2

�x1, 0�, �28�

where H+(d ) and Hÿ(d ) depend on the location of the crack and are given, respectively, by (22), (24),
(26) and (23), (25), (27).

4. The crack tip singularity and the second outer term

U 0 is the solution to a problem settled on a bimaterial structure with a crack lying along the
interface. The two components being isotropic, the generalized plane elasticity solution U (the underbar
denotes a vector) undergoes a singular displacement developed in the vicinity of the crack tip under the
form (Williams, 1959)

U�x1, x2� � U�0, 0� �Re�kcr
lcuc�y�� � kIII

��
r
p

uIII�y�e3 � � � � , �29�
where r and y are the polar coordinates with the origin at the crack tip and e3 is the unit normal to the
(x1, x2) plane. The complex exponent lc is such that Re(lc)=1/2, kc is a complex intensity factor and uc
is the complex plane crack tip mode. The next term, dedicated to the out of plane Mode III involves
only real terms, the intensity factor kIII and the mode

UIII��x1, x2� �
��
r
p

uIII�y�, �30�
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with

uIII�y� � cos�y=2� in O1, uIII�y� � G1

G3
cos�y=2� in O3: �31�

The role of the index + in (30) will appear below, it is not related to any position in the domain but to
a positive singular exponent.

Remark 7. For simplicity (dimensionless displacements, Remark 1), the de®nition of the intensity factor
kIII (29) directly involves the displacement ®eld (30) and (31). Thus, in the homogeneous case (G1=G3)
for instance, it di�ers from the usual de®nition by a coe�cient 2/G1 (up to a constant

������
2p
p

).

In-plane and out-of-plane components are uncoupled, thus, in the present case, U 0 de®ned in (2) and
(3) undergoes the Mode III singular behaviour

U 0�x1, x2� � U 0�0, 0� � k0III
��
r
p

uIII�y� � Û
0�x1, x2�, �32�

where UÃ 0 is a smooth part (i.e. involving exponents greater or equal to 1).
As a consequence, conditions (15), (20) and (28) are incompatible with the usual smoothness

conditions which guarantee existence and uniqueness of the elastic solutions. This is the main feature of
this paper, in case of a singular point, the second outer term U 1 cannot be directly determined by the
previously de®ned matching process. A superimposition principle must be invoked.

Using (32), U 1 splits into two parts

U 1�x1, x2� � k0III
�U
1�x1, x2� � �̂U

1

�x1, x2�: �33�

The second one is the solution to a well-posed problem with boundary conditions derived from the
regular part UÃ 0 of U 0, whereas U

- 1 and �s1 are associated with the boundary and transmission
conditions derived from the singular part of (32)

( �U
1) � 1��

r
p 2G1G3 ÿ G2�G1 � G3�

4G2G3
, ( �s1)n � 0 through G13

u �r � ÿx1�,

G1

@ �U
1

�
@x2
� 1

4r
��
r
p H��d� along G13

c� �r � x1�,

G3
@ �U

1

ÿ
@x2
� ÿG1

G3

1

4r
��
r
p Hÿ�d� along G13

cÿ �r � x1�:

This term is a priori consistent with a strongly singular behaviour 1=
��
r
p

and a splitting

�U
1�x1, x2� � 1��

r
p v�y� �U

1�x1, x2�, �34�

where U
1
is a complementary part, smoother than the ®rst term. Unfortunately, it is impossible to

determine the function v(y ) such that the above ®rst term ®ts into the singular part of the boundary
conditions. This relies on the Fredholm theorem (Leguillon and Sanchez-Palencia, 1987, p. 179). The
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exponent 1/2 is characteristic of the problem and as a 2-D property ÿ1/2 is too, thus determining v
associated with this last exponent needs to solve a non-homogeneous problem with a non-invertible
operator. The operator kernel contains the dual mode UIIIÿ to the already mentioned mode UIII+ (30)
(Leguillon and Sanchez-Palencia, 1987, p. 91)

UIIIÿ�x1, x2� � 1��
r
p uIII�y�: �35�

As a very speci®c property of this situation (scalar problem) the same function uIII(y ) (31) is involved in
the two dual modes but this is not a general rule.

The problem can admit an in®nite number of solutions provided some compatibility conditions, but
there are not satis®ed herein. Thus (34) is wrong, the solution must be sought in the form (Leguillon
and Sanchez-Palencia, 1987, p. 182)

�U
1�x1, x2� � 1��

r
p �C ln r uIII�y� � v�y�� �U

1�x1, x2�: �36�

The constant C is selected such that the previously mentioned compatibility conditions hold true.
Moreover, if calculations lead to C = 0, (36) reduces to (34), it proves that the initial compatibility
condition was ful®lled.

Let us focus our attention on the ®rst term of the right-hand-side member of (36). From the
equilibrium equation (in polar coordinates) and the jumps conditions through G 13 (15) and (20), Eq.
(36) becomes

1��
r
p �C ln r G 02 cos�y=2� � v2�y�� �

G 02��
r
p �C ln r cos�y=2� � Cy sin�y=2� � A2 sin�y=2� � B cos�y=2��,

�37�
with

G3A� ÿ G1Aÿ � �G3 ÿ G1�Cp � G1 ÿ G2

4G2
G3 � G3 ÿ G2

4G2
G1:

Here, G '+=1 and G 'ÿ=G1/G3, and as usual the index2holds for the upper (x2 > 0) and lower (x2 < 0)
half planes, respectively.

The boundary conditions on the crack lips lead to

A� � H��d �
2G1

, Aÿ � Hÿ�d�
2G3

ÿ 2Cp:

At this time, the constant B remains unknown, it means exactly that the solution is determined up to
one element (35) of the operator kernel.

5. Matched asymptotics around the crack tip

The above relations (32), (33) and (36) express the behaviour of the solution when approaching the
singular crack tip, where the previous expansions are questionable. To be consistent, after the change of
variable y=x/e, there would exist an inner expansion whose behaviour at in®nity is governed by the
above mentioned terms
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U e�ey1, ey2� � F0�e�W 0� y1, y2� � F1�e�W 1� y1, y2� � F2�e�W 2� y1, y2� � � � � :
As usual, the ®rst term matching is easy

F0�e� � 1, W 0� y1, y2� � U 0�0, 0�:
The next term leads to a decaying condition at in®nity

F1�e� � k0IIIC
��
E
p

ln e, W 1� y1, y2�0 1���
r
p uIII�y� as r41 �r � r=e�: �38�

The third matching condition has contributions from various terms of the outer expansion

F2�e� � k0III
��
e
p

, W 2� y1, y2�0 ���
r
p

uIII�y� � 1���
r
p �C ln r uIII�y� � v�y� � � � ��: �39�

Obviously, in (39) the behaviour at in®nity is governed by the ®rst term, i.e. the crack tip Mode III, the
corresponding solution can be sought by superimposition in the form

W 2� y1, y2� � ���
r
p

uIII�y� � Ŵ
2� y1, y2�, �40�

and WÃ 2 is the solution to a well-posed problem, its behaviour at in®nity is exactly described by the
terms of (39) missing in (40).

Remark 8. This point is not really obvious. An option is to consider the numerical approach used to
solve these inner problems. The in®nite domain is arti®cially bounded at a large distance D>>1 (i.e. large
compared to the stretched layer thickness) (Fig. 8), this new created boundary GD supporting the
homogeneous Dirichlet condition

W 2
D� y1y2� �

���
r
p

uIII�y� on GD:

This allows one to avoid any di�culty related to the conditions at in®nity and as D41, the computed
solution W 2

D converges (up to an irrelevant constant) toward the required solution W 2 (Sanchez-
Palencia, 1995).

But W 1 cannot be solved in the same way, no superimposition process can be invoked and the

Fig. 8. The inner domain derived from stretching y1=x1/e, y2=x2/e.
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problem has in general, no solution. The unknown constant B in (37) can be used to overcome this
di�culty. Taking

B � ÿC ln e

allows the cancellation of the hindering term W 1 (38). Then, the inner expansion reads

U e�ey1, ey2� � U 0�0, 0� � ��
E
p

k0III�
���
r
p

uIII�y� � Ŵ
2� y1, y2�� � � � � , �41�

where WÃ 2 is de®ned by (40).
A consistent outer expansion must be rewritten

U e�x1, x2� � U 0�x1, x2� ÿ e ln eCk0IIIU
1�x1, x2� � ek0IIIU

2�x1, x2� � � � � : �42�
The ®rst term of the above expansion is described by (32) and the next one by

U 1�x1, x2� � 1��
r
p uIII�y� � Û

1�x1, x2�:

Without omitting the smooth term from (33), the third one reads

U 2�x1, x2� � 1��
r
p �C ln ruIII�y� � v̂�y�� � Û

2�x1x2� � �̂U
1

�x1, x2�,

where vÃ(y )=v(y )ÿBuIII(y ), or in other words, using (37)

v̂�y� � G 02�Cy� A2� sin�y=2�:
The complementary terms UÃ 1, UÃ 2 and �̂U

1

are solutions to well-posed problems de®ned below in the
numerical example.

Remark 9. This reasoning is not a proof of the existence of such expansions, there is simply no counter
argument and the results seem to be in logical agreement with the simpler case of a singular point like a
corner (Leguillon, 1994, 1995) and with more conventional situations (Leguillon, 1993).

There are some particular cases to exhibit.

. First, if the two substrates are identical, G1=G3, it is the situation examined by Atkinson and Chen
(1996). The coe�cient C is independent of d

C � G 2
1 ÿ G 2

2

4pG1G2
: �43�

It is positive if the adhesive layer is more compliant than the substrates and negative otherwise. It
vanishes for G2=G1, when there is no bonding zone (the three domains are made of the same
material, G1=G2=G3). The outer expansion change due to the crack location occurs only in the third
term through the coe�cients A2.

. Second, in the case considered by Hutchinson et al. (1987), if there is no adhesive layer. The two
materials O 1e and O 3e are in contact along the interface G 13e located at x2=e/2 for instance, then
G2=G3. The crack is paralleling the interface and
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C � G1 ÿ G3

4pG1
�1ÿ 2d� if dR1=2 and C � G1 ÿ G3

4pG3
�1ÿ 2d � if dr1=2,

the crack is below the interface in the ®rst case and above in the second one. The coe�cient C
vanishes for d = 1/2, i.e. for an interface crack, and for G1=G3 when as before there is no interface
at all.

6. Numerical example

Numerical tests have been performed to illustrate the above results. Let us consider a 1 � 1
dimensionless square O (Fig. 8) made of two materials O 1 and O 3 (G1=10 GPa, G3=1 GPa) bonded
together along an interface G 13 located at x2=0. A crack (length=0.3) is lying along the interface,
starting from the right edge. The structure is clamped on the bottom face and a unit out-of-plane
traction T= 1 GPa acts on the upper face (thus, for a given traction T ' it su�ces to multiply
displacements, stresses and load dependent intensity factors by T ').

With the help of a ®ne mesh in the vicinity of the joint, a ®rst computation taking into account a
dimensionless joint thickness e=0.02 and a compliant adhesive material G2=0.1 GPa is used as
reference (Fig. 9).

Next the springs model is checked. It does not require a ®ne mesh, since there is no joint in the
unperturbed structure, but necessitates to introduce sliding elements along the interface, i.e. the axis
x2=0 (LeÂ neÂ and Leguillon, 1982), with a spring sti�ness G=G2/e=5 GN/m.

Finally, the present model is put to work from two points of view. The simplest `naive' one consists
of ignoring the theoretical di�culty resulting from the singular behaviour of U 0 at the crack tip (Section
4). Indeed, the ®nite elements approximation yields (mesh dependent) bounded derivatives which can be
directly introduced in the transmission condition (15), moreover, using linear elements (three nodes
Lagrange triangles) cancels the second transmission condition (20). The second more rigorous technique
implies the calculation of each term of the outer expansion (42). The leading term U 0 is the solution to
the classical problem with perfect transmission conditions through the interface. Then, the

Fig. 9. Out-of-plane displacement on the left side of the square, comparison between an FE reference solution and three di�erent

models.
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complementary parts of the corrective terms are determined. The boundary conditions to apply are

Û
1�x1, x2� � ÿ 1��

r
p uIII�y�, �44�

Û
2�x1, x2� � ÿ 1��

r
p �C ln r uIII�y� � v̂�y��,

�̂U
1

�x1, x2� � 0, �45�

on the bottom edge, where displacements are prescribed in the original problem.

s�Û1�n � 0, s�Û2�n � 0, s� �̂U
1

�n � 0,

on the crack lips [s(j ) denotes the stress ®eld associated with the displacement j ].

s�Û1�n � ÿs
�

1��
r
p uIII�y�

�
n �46�

s�Û2�n � ÿs
�

1��
r
p �C ln r uIII�y� � v̂�y��

�
n

s� �̂U
1

�n � 0 �47�

on the upper, right and left edges of the structure, where forces are prescribed in the original problem.
The above conditions (44)±(47) involving the strongly singular term 1=

��
r
p

are prescribed only at a
distance of the origin, thus, as expected, it avoids any di�culty. These conditions are completed for the
®rst two terms by usual transmission conditions through the interface

(Û
1
) � 0, (Û

2
) � 0, (s�Û1�)n � 0, (s�Û2�)n � 0:

Concerning the transmission conditions valid for �̂U
1

, the previous reasoning (applied to the so-called
`naive' method) is used leading to

( �̂U
1

) � G1 ÿ G2

2G2

@ �U 0
� ÿ k0IIIUIII��
@x2

�x1, 0� � G3 ÿ G2

2G2

@ �U 0
ÿ ÿ k0IIIUIII��
@x2

�x1, 0�, (s� �̂U
1

�)n � 0:

This complete model seems to be a little bit sti�er than the reference while the other two (naive and
springs) are slightly more compliant. We point out in this section that, computations have been
performed on the unperturbed structure, as a consequence the exact location of the crack does not play
any role. It can be within the joint, along the upper or lower faces or even outside at a short distance, it
is modelled by the same interface crack. The only changes in the outer expansion occur through the
coe�cient C and the function vÃ.
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7. Fictitious and actual intensity factors

The unperturbed structure, undergoing problems de®ning the various terms of the outer expansion, is
in a way a virtual one. The adhesive layer has disappeared and is replaced by an ideal line. It is possible
to de®ne a Mode III intensity factor k 0

III, k
1
III, . . . , for each term U 0, UÃ 1, . . . , of this outer expansion,

they correspond to an interface crack singularity characterized by (30) and (31). As a consequence (42)
provides a ®ctitious expansion

keIII � k0III�1ÿ e ln e Ck1III � � � ��: �48�
Relations (43) and (48) are contradictory with Atkinson and Chen (1996) conclusions for instance. For
e=0.02, G1=G3=10 GPa, G2=0.1 GPa, then C27.96. Calculations by contour integrals (Leguillon
and Sanchez-Palencia, 1987, p. 77) give

k0III � 0:079, k1III � 1:31 and then keIII ' 1:62, k0III � 0:128,

neglecting the other terms of the expansion. Thus, from (48), one would derive ®rst that the intensity
factor increases with joint thickness and second, that an adhesive layer more compliant than the
substrates tends to increase the intensity factor of the crack tip singularity. This last point is not
satisfactory, Atkinson and Chen (1996) state the contrary (which seems more rational), but as seen
below, the terms involved in (48) are meaningless.

The leading term k 0
III of this expansion is baptised the ®ctitious intensity factor, it is not associated

with any existing singularity of the exact structure but only with a singularity of the simpli®ed frame. It
is, in a way, meaningless although it is typically the intensity factor computed by a classical ®nite
element approach in structural computations. It is di�erent from the actual one derived from (41)

keIII � k0IIIKIII � � � � ,
where KIII is the Mode III intensity factor associated with W 2 (40) and expressed in terms of the
stretched variable

���
r
p � ������

r=E
p

: As well as k 1
III it is independent of the external applied loads. Moreover,

involved in an inner problem it is also independent of the exact and eventually complicated geometry of

Fig. 10. KIII vs G2 for G1=G3=10 GPa.
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the full structure (see Remark 8 and Fig. 8). Thus, at the leading-order, there exists a linear relation
between the two coe�cients kIII and k 0

III as also shown by Hutchinson et al. (1987) in a slightly di�erent
situation

kIII � k0IIIKIII: �49�
The corresponding singularity to take into account in this case really exists and depends on the location
of the crack tip in the stretched inner domain, it is characterized by

VIII� y�1, y�2� �
�����
r�

p
vIII�y��,

where the superscript � denotes Cartesian and polar coordinates with the origin at the crack tip. Fig. 10
plots the multiplicative coe�cient KIII in the case G1=G3=10 GPa for di�erent values of G2 from 0.1 to
20 GPa (i.e. from G1/100 to 2G1) and for a crack lying in the middle of the joint. Coe�cient KIII equals
1 when G1=G2=G3 as expected. It is computed from a ®nite element solution W 2

D (Remark 8) by
contour integrals (Leguillon and Sanchez-Palencia, 1987), as already mentioned above.

Remark 10. In this speci®c homogeneous case with the crack lying within the joint, KIII can be
analytically derived by equating the remote and local energy release rates (Fleck et al., 1991, Atkinson
and Chen, 1996)

G1

2
�k0III�2 �

G2

2
k2III, �50�

leading to

KIII �
�������
G1

G2

r
,

which is in complete agreement with Fig. 10. The unusual relation (50) is due to the slightly modi®ed
intensity factors de®nition (Remark 7), k 0

III and kIII di�er from the usual ones, respectively, by 2/G1 and
2/G2.

The situation becomes more and more entangled depending on the location of the crack. If the crack
tip lies strictly in one of the domains O k, k= 1, 2, 3, the same function is involved, it corresponds (as
in the above example) to a crack in a homogeneous material

vIII�y�� � cos�y�=2�:
If the crack lies along the interface between the upper substrate and the adhesive layer, the de®nition is
di�erent, it depends on the properties of the adjacent materials

vIII�y�� � cos�y�=2� in O1, vIII�y�� � G1

G2
cos�y�=2� in O2:

Finally, if the crack lies at the bottom, along the interface between the adhesive layer and the lower
substrate, there is a similar de®nition, but depending on the properties of other adjacent materials

vIII�y�� � cos�y�=2� in O2, vIII�y�� � G2

G3
cos�y�=2� in O3:

The multiplicative coe�cient KIII can be de®ned and computed (as above) whatever the relative sti�ness
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of the joint, it can be smaller (as often) or larger than the substrates sti�ness. It is not possible to make
the same analysis with a springs model which works only in case of very low joint sti�ness.

8. Conclusion

The mismatch between the ®ctitious and actual intensity factors is obvious, it is not the same singular
modes which are involved. Moreover, it is vain to expect a better coherency from the energy release rate
G. This one is de®ned as a limit

G � lim
d`40
ÿ dW

d`
,

where dW is the change in potential energy corresponding to a crack increment dl. This de®nition
implies to use crack increments as small as needed and thus, becoming smaller than the joint thickness
itself, but such a calculation is obviously not permitted for the outer terms which are insensitive to very
small dl (smaller than e ). Any energy release rate computed from the outer terms and especially from
the leading one U 0 is then meaningless. A similar conclusion is drawn by Ryvkin et al. (1995). Their far
intensity factor corresponds to the present k 0

III and their near one to kIII [see (49)].
Atkinson and Chens' (1996) case is special, the crack lies in a homogeneous material in both local and

remote models. Then, the same displacement mode (30) and (31) is involved and there is simply a stress
rescaling by G1 or G2 leading to the conclusion of Remark 10.

Remark 11. All these considerations lead to de®ne an apparent toughness of the interface to be used in a
®nite element simulation (i.e. based on the computation of U 0)

k
app
IIIc �

kIIIc

KIII
, �51�

where kIIIc is the toughness of the material forming the joint if the crack lies within the joint, of one of
the substrates if the crack lies out of the joint, or one of the interfaces if the crack is at the top or the
bottom of the joint. Not a single de®nition exists of the apparent interface toughness. With (51), the
growth criterion, expressed in terms of the ®ctitious intensity factor, writes

k0IIIrk
app
IIIc:
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